3.940 \(\int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=435 \[ \frac {\sqrt {a+b} \cot (c+d x) \left (-4 a^2 (A+2 C)-4 a b B+A b^2\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a^2 d}+\frac {\sqrt {a+b} \cot (c+d x) (2 a (A+2 B+4 C)+A b) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a d}+\frac {(4 a B+A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 a d}+\frac {(a-b) \sqrt {a+b} (4 a B+A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a b d}+\frac {A \sin (c+d x) \cos (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d} \]

[Out]

1/4*(a-b)*(A*b+4*B*a)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)
*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d+1/4*(A*b+2*a*(A+2*B+4*C))*cot(d*x+c)*Ell
ipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*
(1+sec(d*x+c))/(a-b))^(1/2)/a/d+1/4*(A*b^2-4*a*b*B-4*a^2*(A+2*C))*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)
/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))
^(1/2)/a^2/d+1/4*(A*b+4*B*a)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d+1/2*A*cos(d*x+c)*sin(d*x+c)*(a+b*sec(d*x+c)
)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.77, antiderivative size = 435, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {4094, 4104, 4058, 3921, 3784, 3832, 4004} \[ \frac {\sqrt {a+b} \cot (c+d x) \left (-4 a^2 (A+2 C)-4 a b B+A b^2\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a^2 d}+\frac {\sqrt {a+b} \cot (c+d x) (2 a (A+2 B+4 C)+A b) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a d}+\frac {(4 a B+A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 a d}+\frac {(a-b) \sqrt {a+b} (4 a B+A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a b d}+\frac {A \sin (c+d x) \cos (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((a - b)*Sqrt[a + b]*(A*b + 4*a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b
)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*b*d) + (Sqrt[a +
 b]*(A*b + 2*a*(A + 2*B + 4*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(
a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*d) + (Sqrt[a + b]*(
A*b^2 - 4*a*b*B - 4*a^2*(A + 2*C))*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a +
 b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a^2*d)
 + ((A*b + 4*a*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*a*d) + (A*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Si
n[c + d*x])/(2*d)

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4094

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{2} \int \frac {\cos (c+d x) \left (\frac {1}{2} (A b+4 a B)+(2 b B+a (A+2 C)) \sec (c+d x)+\frac {1}{2} b (A+4 C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {(A b+4 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\int \frac {\frac {1}{4} \left (A b^2-4 a b B-4 a^2 (A+2 C)\right )-\frac {1}{2} a b (A+4 C) \sec (c+d x)+\frac {1}{4} b (A b+4 a B) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a}\\ &=\frac {(A b+4 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\int \frac {\frac {1}{4} \left (A b^2-4 a b B-4 a^2 (A+2 C)\right )+\left (-\frac {1}{4} b (A b+4 a B)-\frac {1}{2} a b (A+4 C)\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a}-\frac {(b (A b+4 a B)) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a}\\ &=\frac {(a-b) \sqrt {a+b} (A b+4 a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a b d}+\frac {(A b+4 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\left (A b^2-4 a b B-4 a^2 (A+2 C)\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a}+\frac {(b (A b+2 a (A+2 B+4 C))) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a}\\ &=\frac {(a-b) \sqrt {a+b} (A b+4 a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a b d}+\frac {\sqrt {a+b} (A b+2 a (A+2 B+4 C)) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {\sqrt {a+b} \left (A b^2-4 a b B-4 a^2 (A+2 C)\right ) \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a^2 d}+\frac {(A b+4 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 19.98, size = 1842, normalized size = 4.23 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(A*Sqrt[a + b*Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + (Sqrt[a + b*Sec[c + d*x]]*(-(a*A*b*Sqrt[(-a + b)/(a + b)
]*Tan[(c + d*x)/2]) - A*b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2] - 4*a^2*Sqrt[(-a + b)/(a + b)]*B*Tan[(c +
d*x)/2] - 4*a*b*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2] + 2*a*A*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^3
+ 8*a^2*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^3 - a*A*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 + A*b^2*
Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 - 4*a^2*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^5 + 4*a*b*Sqrt[(-a
 + b)/(a + b)]*B*Tan[(c + d*x)/2]^5 + (8*I)*a^2*A*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a +
b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Ta
n[(c + d*x)/2]^2)/(a + b)] - (2*I)*A*b^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(
c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*
x)/2]^2)/(a + b)] + (8*I)*a*b*B*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/
2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/
(a + b)] + (16*I)*a^2*C*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a
+ b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]
 + (8*I)*a^2*A*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a -
 b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2
)/(a + b)] - (2*I)*A*b^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a
 + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c +
 d*x)/2]^2)/(a + b)] + (8*I)*a*b*B*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*
x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 +
b*Tan[(c + d*x)/2]^2)/(a + b)] + (16*I)*a^2*C*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*
Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d
*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + I*(a - b)*(A*b + 4*a*B)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]
*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan
[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (2*I)*(a - b)*(A*b + 2*a*(A + 2*C))*EllipticF[I*ArcSinh[Sqr
t[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*
Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(4*a*Sqrt[(-a + b)/(a + b)]*d*Sqrt[b + a
*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)*(1 + Tan[(c +
d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

fricas [F]  time = 2.18, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + B \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + A \cos \left (d x + c\right )^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2*sec(d*x + c)^2 + B*cos(d*x + c)^2*sec(d*x + c) + A*cos(d*x + c)^2)*sqrt(b*sec(d*x +
 c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)

________________________________________________________________________________________

maple [B]  time = 1.82, size = 2623, normalized size = 6.03 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-1/4/d*(-1+cos(d*x+c))^2*(-4*B*cos(d*x+c)^2*a^2+A*cos(d*x+c)^2*b^2-8*C*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
a^2-A*cos(d*x+c)*b^2+8*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+4*B*cos(d*x+c)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*sin(d*x+c)*a*b-8*B*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-A*cos(d*x+c)^2*a*b-2*A*co
s(d*x+c)*a*b+4*B*cos(d*x+c)^2*a*b-4*B*cos(d*x+c)*a*b-8*C*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2
+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a*b+8*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*
x+c)*a*b+4*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a^2+16*C*cos(d*x+c)*a^2*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(
(a-b)/(a+b))^(1/2))+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+
c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*c
os(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*
b+8*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c
))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+2*A*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b
+3*A*cos(d*x+c)^3*a*b+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-2*A*cos(d*x+c)^2*a^2+2*A*cos(d*x+c)^4
*a^2+4*B*cos(d*x+c)^3*a^2-8*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+4*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*s
in(d*x+c)+8*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+A*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-4*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+4*B*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*a^2*sin(d*x+c)+16*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+8*A*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1
/2))*sin(d*x+c)*cos(d*x+c)*a^2-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b^2+A*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(
a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b^2-4*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a^2)*(1+cos(d*x+c
))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)^5/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec {\left (c + d x \right )}} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \cos ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)*cos(c + d*x)**2, x)

________________________________________________________________________________________